Posts Tagged Performance Tuning

Full Database Caching in #Oracle 12c

If your Oracle Database fits into the buffer cache, we will put all segments into it now upon access – no more direct reads:

SQL> connect / as sysdba
Connected.
SQL> select banner from v$version;

BANNER
--------------------------------------------------------------------------------
Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit Production
PL/SQL Release 12.1.0.2.0 - Production
CORE	12.1.0.2.0	Production
TNS for Linux: Version 12.1.0.2.0 - Production
NLSRTL Version 12.1.0.2.0 - Production

SQL> select sum(bytes)/1024/1024 as mb from v$datafile;

	MB
----------
      1424

SQL> select current_size from v$buffer_pool;

CURRENT_SIZE
------------
	1872

The requirements are met here, I don’t need to force anything:

SQL> select force_full_db_caching from v$database;

FORCE_FUL
---------
NO

SQL> select bytes/1024/1024 as mb from dba_segments 
     where owner='ADAM' and segment_name='SALES';

	MB
----------
       600

SQL> select count(*) from adam.sales;

  COUNT(*)
----------
  10000000

SQL> show parameter parallel_degree_policy

NAME				     TYPE
------------------------------------ ---------------------------------
VALUE
------------------------------
parallel_degree_policy		     string
MANUAL

The table got accessed once and is now loaded into the buffer cache. PARALLEL_DEGREE_POLICY is on the default MANUAL, remember that.

SQL> connect adam/adam
Connected.
SQL> select name,value from v$mystat natural join v$statname 
     where name in ('physical reads','physical reads direct','session logical reads');

NAME							VALUE
-------------------------------------------------- ----------
session logical reads					   42
physical reads						    0
physical reads direct					    0

SQL> select count(*) from sales;

  COUNT(*)
----------
  10000000

SQL> select name,value from v$mystat natural join v$statname 
     where name in ('physical reads','physical reads direct','session logical reads');

NAME							VALUE
-------------------------------------------------- ----------
session logical reads					75620
physical reads						    0
physical reads direct					    0

Only logical reads, because the table is in the buffer cache. Also for parallel queries:

SQL> select /*+ parallel (sales,4) */ max(amount_sold) from sales;

MAX(AMOUNT_SOLD)
----------------
	    5000

SQL> select * from v$pq_sesstat;

STATISTIC					   LAST_QUERY SESSION_TOTAL	CON_ID
-------------------------------------------------- ---------- ------------- ----------
Queries Parallelized					    1		  1	     0
DML Parallelized					    0		  0	     0
DDL Parallelized					    0		  0	     0
DFO Trees						    1		  1	     0
Server Threads						    4		  0	     0
Allocation Height					    4		  0	     0
Allocation Width					    1		  0	     0
Local Msgs Sent 					  156		156	     0
Distr Msgs Sent 					    0		  0	     0
Local Msgs Recv'd					  156		156	     0
Distr Msgs Recv'd					    0		  0	     0
DOP							    4		  0	     0
Slave Sets						    1		  0	     0

13 rows selected.

SQL> select name,value from v$mystat natural join v$statname 
     where name in ('physical reads','physical reads direct','session logical reads');

NAME							VALUE
-------------------------------------------------- ----------
session logical reads				       152410
physical reads						    0
physical reads direct					    0

SQL> select name,value from v$sysstat where name='physical reads direct';

NAME							VALUE
-------------------------------------------------- ----------
physical reads direct					   21

SQL> select /*+ parallel (sales,4) */ max(amount_sold) from sales;

MAX(AMOUNT_SOLD)
----------------
	    5000

SQL> select name,value from v$sysstat where name='physical reads direct';

NAME							VALUE
-------------------------------------------------- ----------
physical reads direct					   21

Looks like I did In-Memory Parallel Query although PARALLEL_DEGREE_POLICY is on MANUAL, doesn’t it? Just for comparison, I did the same with an 11g version:

SQL> select banner from v$version;

BANNER
-------------------------------------------------------------------------------------
Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - 64bit Production
PL/SQL Release 11.2.0.3.0 - Production
CORE	11.2.0.3.0	Production
TNS for Linux: Version 11.2.0.3.0 - Production
NLSRTL Version 11.2.0.3.0 - Production

SQL> select sum(bytes)/1024/1024 as mb from v$datafile;

	MB
----------
      1090

SQL> select current_size from v$buffer_pool;

CURRENT_SIZE
------------
	1200

SQL> select bytes/1024/1024 as mb from dba_segments where owner='ADAM' and segment_name='SALES';

	MB
----------
       528


SQL> select count(*) from adam.sales;

  COUNT(*)
----------
  10000000

SQL> show parameter parallel_degree_policy

NAME				     TYPE			       VALUE
------------------------------------ --------------------------------- ---------
parallel_degree_policy		     string			       MANUAL

SQL> connect adam/adam
Connected.
SQL> select name,value from v$mystat natural join v$statname 
     where name in ('physical reads','physical reads direct','session logical reads');

NAME									    VALUE
---------------------------------------------------------------------- ----------
session logical reads							       26
physical reads									0
physical reads direct								0

SQL> select count(*) from sales;

  COUNT(*)
----------
  10000000

SQL> select name,value from v$mystat natural join v$statname 
     where name in ('physical reads','physical reads direct','session logical reads');

NAME									    VALUE
---------------------------------------------------------------------- ----------
session logical reads							    67465
physical reads								    67433
physical reads direct							    67433

SQL> select /*+ parallel (sales,4) */ max(amount_sold) from sales;

MAX(AMOUNT_SOLD)
----------------
	    5000

SQL> select * from v$pq_sesstat;

STATISTIC				   LAST_QUERY SESSION_TOTAL
------------------------------------------ ---------- -------------
Queries Parallelized				    1		  1
DML Parallelized				    0		  0
DDL Parallelized				    0		  0
DFO Trees					    1		  1
Server Threads					    4		  0
Allocation Height				    4		  0
Allocation Width				    1		  0
Local Msgs Sent 				  116		116
Distr Msgs Sent 				    0		  0
Local Msgs Recv'd				  116		116
Distr Msgs Recv'd				    0		  0

11 rows selected.

SQL> select name,value from v$mystat natural join v$statname 
     where name in ('physical reads','physical reads direct','session logical reads');

NAME									    VALUE
---------------------------------------------------------------------- ----------
session logical reads							   135115
physical reads								   134866
physical reads direct							   134866

As you can see, I got direct reads in 11g for both the serial and the parallel query.
Do not confuse this feature with the In-Memory Option, it is much less sophisticated than that. But it doesn’t come with an extra charge at least :-)

, ,

8 Comments

Less Performance Impact with Unified Auditing in #Oracle 12c

There is a new auditing architecture in place with Oracle Database 12c, called Unified Auditing. Why would you want to use it? Because it has significantly less performance impact than the old approach. We buffer now audit records in the SGA and write them asynchronously to disk, that’s the trick:

Unified Auditing

Other benefits of the new approach are that we have now one centralized way (and one syntax also) to deal with all the various auditing features that have been introduced over time, like Fine Grained Auditing etc. But the key improvement in my opinion is the reduced performance impact, because that was often hurting customers in the past. Let’s see it in action! First, I will record a baseline without any auditing:

[oracle@uhesse ~]$ sqlplus / as sysdba

SQL*Plus: Release 12.1.0.2.0 Production on Fri Jul 31 08:54:32 2015

Copyright (c) 1982, 2014, Oracle.  All rights reserved.


Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing options

SQL> select value from v$option where parameter='Unified Auditing';

VALUE
----------------------------------------------------------------
FALSE

SQL> @audit_baseline
Connected.

Table truncated.


Noaudit succeeded.


PL/SQL procedure successfully completed.

Connected.

PL/SQL procedure successfully completed.

Elapsed: 00:00:06.07
Connected.

PL/SQL procedure successfully completed.
SQL> host cat audit_baseline.sql
connect / as sysdba
truncate table aud$;
noaudit select on adam.sales;
exec dbms_workload_repository.create_snapshot

connect adam/adam
set timing on
declare v_product adam.sales.product%type;
begin
for i in 1..100000 loop
select product into v_product from adam.sales where id=i;
end loop;
end;
/
set timing off

connect / as sysdba
exec dbms_workload_repository.create_snapshot

So that is just 100k SELECT against a 600M MB table with an index on ID without auditing so far. Key sections of the AWR report for the baseline:

unified_auditing1unified_auditing2

The most resource consuming SQL in that period was the AWR snapshot itself. Now let’s see how the old way to audit impacts performance here:

SQL>  show parameter audit_trail

NAME_COL_PLUS_SHOW_PARAM                 TYPE        VALUE_COL_PLUS_SHOW_PARAM
---------------------------------------- ----------- ----------------------------------------
audit_trail                              string      DB, EXTENDED
SQL> @oldaudit
Connected.

Table truncated.


Audit succeeded.


PL/SQL procedure successfully completed.

Connected.

PL/SQL procedure successfully completed.

Elapsed: 00:00:56.42
Connected.

PL/SQL procedure successfully completed.
SQL> host cat oldaudit.sql
connect / as sysdba
truncate table aud$;
audit select on adam.sales by access;
exec dbms_workload_repository.create_snapshot

connect adam/adam
set timing on
declare v_product adam.sales.product%type;
begin
for i in 1..100000 loop
select product into v_product from adam.sales where id=i;
end loop;
end;
/
set timing off

connect / as sysdba
exec dbms_workload_repository.create_snapshot

That was almost 10 times slower! The AWR report confirms that and shows why it is so much slower now:

unified_auditing3unified_auditing4

It’s because of the 100k inserts into the audit trail, done synchronously to the SELECTs. The audit trail is showing them here:

SQL> select sql_text,sql_bind from dba_audit_trail where rownum<=10; 
SQL_TEXT                                           SQL_BIND 
-------------------------------------------------- ---------- 
SELECT PRODUCT FROM ADAM.SALES WHERE ID=:B1         #1(1):1 
SELECT PRODUCT FROM ADAM.SALES WHERE ID=:B1         #1(1):2 
SELECT PRODUCT FROM ADAM.SALES WHERE ID=:B1         #1(1):3 
SELECT PRODUCT FROM ADAM.SALES WHERE ID=:B1         #1(1):4 
SELECT PRODUCT FROM ADAM.SALES WHERE ID=:B1         #1(1):5 
SELECT PRODUCT FROM ADAM.SALES WHERE ID=:B1         #1(1):6 
SELECT PRODUCT FROM ADAM.SALES WHERE ID=:B1         #1(1):7 
SELECT PRODUCT FROM ADAM.SALES WHERE ID=:B1         #1(1):8 
SELECT PRODUCT FROM ADAM.SALES WHERE ID=:B1         #1(1):9 
SELECT PRODUCT FROM ADAM.SALES WHERE ID=:B1         #1(2):10 
10 rows selected. 
SQL> select count(*) from dba_audit_trail where sql_text like '%SELECT PRODUCT FROM ADAM.SALES WHERE ID=:B1%';

  COUNT(*)
----------
    100000

Now I will turn on Unified Auditing – that requires a relinking of the software while the database is down. Afterwards:

SQL> select value from v$option where parameter='Unified Auditing';

VALUE
----------------------------------------------------------------
TRUE

SQL> @newaudit
Connected.

Audit policy created.


Audit succeeded.


PL/SQL procedure successfully completed.

Connected.

PL/SQL procedure successfully completed.

Elapsed: 00:00:11.90
Connected.

PL/SQL procedure successfully completed.
SQL> host cat newaudit.sql
connect / as sysdba
create audit policy audsales actions select on adam.sales;
audit policy audsales;
exec dbms_workload_repository.create_snapshot

connect adam/adam
set timing on
declare v_product adam.sales.product%type;
begin
for i in 1..100000 loop
select product into v_product from adam.sales where id=i;
end loop;
end;
/
set timing off

connect / as sysdba
exec dbms_workload_repository.create_snapshot

That was still slower than the baseline, but much better than with the old method! Let’s see the AWR report for the last run:

unified_auditing5

unified_auditing6

Similar to the first (baseline) run, the snapshot is the most resource consuming SQL during the period. DB time as well as elapsed time are shorter by far than with the old audit architecture. The 100k SELECTs together with the bind variables have been captured here as well:

SQL> select sql_text,sql_binds from unified_audit_trail where rownum<=10; 
SQL_TEXT                                                     SQL_BINDS 
------------------------------------------------------------ ---------- 
ALTER DATABASE OPEN 
create audit policy audsales actions select on adam.sales 
audit policy audsales 
SELECT PRODUCT FROM ADAM.SALES WHERE ID=:B1                   #1(1):1 
SELECT PRODUCT FROM ADAM.SALES WHERE ID=:B1                   #1(1):2 
SELECT PRODUCT FROM ADAM.SALES WHERE ID=:B1                   #1(1):3 
SELECT PRODUCT FROM ADAM.SALES WHERE ID=:B1                   #1(1):4 
SELECT PRODUCT FROM ADAM.SALES WHERE ID=:B1                   #1(1):5 
SELECT PRODUCT FROM ADAM.SALES WHERE ID=:B1                   #1(1):6 
SELECT PRODUCT FROM ADAM.SALES WHERE ID=:B1                   #1(1):7 
10 rows selected. 
SQL> select count(*) from unified_audit_trail where sql_text like '%SELECT PRODUCT FROM ADAM.SALES WHERE ID=:B1%';

  COUNT(*)
----------
    100000

The first three lines above show that sys operations are also recorded in the same (Unified!) Audit Trail, by the way. There is much more to say and to learn about Unified Auditing of course, but this may give you a kind of motivation to evaluate it, especially if you have had performance issues in the past related to auditing. As always: Don’t believe it, test it! :-)

 See me here in a video clip, explaining the above. Subscription to Oracle Learning Streams is free for OCP and OCE and included for 30 days after an Oracle University class.

, , ,

2 Comments

Multiple invisible indexes on the same column in #Oracle 12c

After invisible indexes got introduced in 11g, they have now been enhanced in 12c: You can have multiple indexes on the same set of columns with that feature. Why would you want to use that? Actually, this is always the first question I ask when I see a new feature – sometimes it’s really hard to answer :-)

Here, a plausible use case could be that you expect a new index on the same column to be an improvement over the existing old index, but you are not 100% sure. So instead of just dropping the old index, you make it invisible first to see the outcome:

 

[oracle@uhesse ~]$ sqlplus adam/adam

SQL*Plus: Release 12.1.0.2.0 Production on Tue Jul 28 08:11:16 2015

Copyright (c) 1982, 2014, Oracle.  All rights reserved.

Last Successful login time: Tue Jul 28 2015 08:00:34 +02:00

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing options

SQL> col index_name for a10
SQL> select index_name,index_type,visibility from user_indexes;

INDEX_NAME INDEX_TYPE		       VISIBILIT
---------- --------------------------- ---------
BSTAR	   NORMAL		       VISIBLE

SQL> col segment_name for a10
SQL> select segment_name,bytes/1024/1024 from user_segments;

SEGMENT_NA BYTES/1024/1024
---------- ---------------
BSTAR		       160
SALES		       600

SQL> set timing on
SQL> select count(*) from sales where channel_id=3;

  COUNT(*)
----------
   2000000

Elapsed: 00:00:00.18
SQL> set timing off
SQL> @lastplan

PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
SQL_ID	b7cvb9nu10qdb, child number 0
-------------------------------------
select count(*) from sales where channel_id=3

Plan hash value: 2525234362

---------------------------------------------------------------------------
| Id  | Operation	  | Name  | Rows  | Bytes | Cost (%CPU)| Time	  |
---------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |	  |	  |	  |  3872 (100)|	  |
|   1 |  SORT AGGREGATE   |	  |	1 |	3 |	       |	  |

PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
|*  2 |   INDEX RANGE SCAN| BSTAR |  2000K|  5859K|  3872   (1)| 00:00:01 |
---------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   2 - access("CHANNEL_ID"=3)


19 rows selected.

So I have an ordinary B* index here that supports my query, but I suspect that it would work better with a bitmap index. In older versions, you would get this if you try to create it with the old index still existing:

SQL> create bitmap index bmap on sales(channel_id) nologging;
create bitmap index bmap on sales(channel_id) nologging
                                  *
ERROR at line 1:
ORA-01408: such column list already indexed

Enter the 12c New Feature:

SQL> alter index bstar invisible;

Index altered.

SQL> create bitmap index bmap on sales(channel_id) nologging;

Index created.

Now I can check if the new index is really an improvement while the old index remains in place and is still being maintained by the system. So in case the new index turns out to be a bad idea – no problem to fall back on the old one!

SQL> select index_name,index_type,visibility from user_indexes;

INDEX_NAME INDEX_TYPE		       VISIBILIT
---------- --------------------------- ---------
BMAP	   BITMAP		       VISIBLE
BSTAR	   NORMAL		       INVISIBLE

SQL> select segment_name,bytes/1024/1024 from user_segments;

SEGMENT_NA BYTES/1024/1024
---------- ---------------
BMAP			 9
BSTAR		       160
SALES		       600

SQL> set timing on
SQL> select count(*) from sales where channel_id=3;

  COUNT(*)
----------
   2000000

Elapsed: 00:00:00.01
SQL> @lastplan

PLAN_TABLE_OUTPUT
------------------------------------------------------------------------------------
SQL_ID	b7cvb9nu10qdb, child number 0
------------------------------------------------------------------------------------
select count(*) from sales where channel_id=3

Plan hash value: 3722975061

------------------------------------------------------------------------------------
| Id  | Operation		    | Name | Rows  | Bytes | Cost (%CPU)| Time	   |
------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT	    |	   |	   |	   |   216 (100)|	   |
|   1 |  SORT AGGREGATE 	    |	   |	 1 |	 3 |		|	   |

PLAN_TABLE_OUTPUT
------------------------------------------------------------------------------------
|   2 |   BITMAP CONVERSION COUNT   |	   |  2000K|  5859K|   216   (0)| 00:00:01 |
|*  3 |    BITMAP INDEX SINGLE VALUE| BMAP |	   |	   |		|	   |
------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   3 - access("CHANNEL_ID"=3)


20 rows selected.

Looks like everything is better with the new index, right? Let’s see what the optimizer thinks about it:

SQL> alter index bmap invisible;

Index altered.

SQL> select index_name,index_type,visibility from user_indexes;

INDEX_NAME INDEX_TYPE		       VISIBILIT
---------- --------------------------- ---------
BMAP	   BITMAP		       INVISIBLE
BSTAR	   NORMAL		       INVISIBLE

SQL> alter session set optimizer_use_invisible_indexes=true;

Session altered.

SQL> select count(*) from sales where channel_id=3;

  COUNT(*)
----------
   2000000

SQL> @lastplan

PLAN_TABLE_OUTPUT
-------------------------------------------------------------------------------------
SQL_ID	b7cvb9nu10qdb, child number 0
-------------------------------------------------------------------------------------
select count(*) from sales where channel_id=3

Plan hash value: 3722975061

------------------------------------------------------------------------------------
| Id  | Operation		    | Name | Rows  | Bytes | Cost (%CPU)| Time	   |
------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT	    |	   |	   |	   |   216 (100)|	   |
|   1 |  SORT AGGREGATE 	    |	   |	 1 |	 3 |		|	   |

PLAN_TABLE_OUTPUT
------------------------------------------------------------------------------------
|   2 |   BITMAP CONVERSION COUNT   |	   |  2000K|  5859K|   216   (0)| 00:00:01 |
|*  3 |    BITMAP INDEX SINGLE VALUE| BMAP |	   |	   |		|	   |
------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------

   3 - access("CHANNEL_ID"=3)


20 rows selected.

The optimizer agrees that the new index is better. I could keep both indexes here in place, but remember that the old index still consumes space and requires internal maintenance. Therefore, I decide to drop the old index:

SQL> drop index bstar;

Index dropped.

SQL> alter index bmap visible;

Index altered.

Hope that helped to answer the question why you would want to use that 12c New Feature. As always:

Don't believe it, test it!

,

3 Comments

Follow

Get every new post delivered to your Inbox.

Join 3,852 other followers

%d bloggers like this: